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The Ising–Sherrington-Kirpatrick Model in a Magnetic
Field at High Temperature
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We study a spin system on a large box with both Ising interaction and
Sherrington-Kirpatrick couplings, in the presence of an external field. Our results
are: (i) existence of the pressure in the limit of an infinite box. When both Ising
and Sherrington-Kirpatrick temperatures are high enough, we prove that: (ii) the
value of the pressure is given by a suitable replica symmetric solution, and (iii)
the fluctuations of the pressure are of order of the inverse of the square of the
volume with a normal distribution in the limit. In this regime, the pressure can
be expressed in terms of random field Ising models.

KEY WORDS: Ising model; Sherrington-Kirpatrick model; spin-glass; thermo-
dynamic limit; pressure; quadratic coupling.

1. INTRODUCTION

We consider a d-dimensional Ising model in a magnetic field h, perturbed
by a mean field interaction of spin-glass type. The Hamiltonian contains
two parameters, β and κ, which play the role of two inverse temperatures.
When β = 0 the model reduces to the Ising model at temperature 1/κ,
while for κ = 0 one recovers the Sherrington-Kirkpatrick (SK) model at
temperature 1/β. The understanding of the SK model has recently wit-
nessed great progress (see, e.g., refs. 8, 10 and 14). The main interest in
the analysis of this model is the possibility of investigating the robustness
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of the phenomena typical of mean field spin glass models, in the pres-
ence of additional interactions of non-mean-field character. In addition,
the “Ising–Sherrington-Kirpatrick” model is possibly of physical interest
in itself since, as well known, the oscillating part of the interaction in real
spin glasses decays quite slowly with distance.

The model has been previously considered in ref. 3 under the addi-
tional assumptions that h = 0 and that the Ising model is ferromagnetic.
Under these conditions it was proven that, if β and κ are small enough,
the infinite volume pressure is given by the sum of the Ising pressure and
of the SK one, at the respective temperatures. Moreover, the disorder fluc-
tuations of the pressure were found to be of order 1/V , V being the vol-
ume of the system, and to satisfy a central limit theorem. (Actually, the
fluctuations are still of order 1/V even if the ferromagnetic requirement is
dropped, while the proof of the central limit behavior in ref. 3 requires the
validity of the FKG inequalities).

In the present paper, the Ising interaction decays exponentially fast
with distance, but is not necessarily ferromagnetic. It turns out that
the presence of the magnetic field changes qualitatively the picture with
respect to ref. 3. Indeed we find, still for κ and β small enough, that the
limit pressure is given in terms of the pressure of an Ising model with
random external field, the strength of the randomness being related to
the typical value of the overlap between two replicas of the system. It is
remarkable, though natural, that the random field Ising model, which has
its own interest,(2) plays such an important role in our model. Note also
that the pressure of our model can be computed only via the thermody-
namic limit of another disordered system. This is contrast with the case
h= 0 we mentioned above, and also of course with the case κ = 0 of the
standard SK model. The second difference is that the fluctuations of the
pressure in presence of h satisfy a central limit theorem on the scale 1/

√
V

rather than 1/V . The same phenomenon is known to happen in the case
of the usual SK model, (see for instance refs. 1, 4 and 11).

In the region of thermodynamic parameters we consider, the system is
in a “replica-symmetric” (RS) phase, the overlap between two independent
replicas being a non-random value in the thermodynamic limit. Our meth-
ods fail beyond some values β0(h) and κ0(h), which we believe to be an
artifact of our approach, rather than representing the true boundary of the
RS region. The same inconvenient has been previously encountered in the
analysis of the SK model.(9,15) In principle one could improve these values
by employing the replica symmetry breaking scheme which for instance
enabled M. Talagrand(16) to control the whole RS region of the SK model,
and later the entire phase space.(14) However, in the present case (as well
as in ref. 3) one of the reasons why we do not reach the true critical line is
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due to an incomplete control of the underlying random field Ising model,
and this problem would not be fixed by the methods of ref. 16. For this
reason, we prefer to use a generalization of the technically simpler “qua-
dratic replica coupling” technique introduced in ref. 9.

It would be of course an interesting challenge to go beyond the pres-
ent approach, and to deal with lower-temperature situations, where the
Ising–SK system possibly shows a RSB-like behavior.

2. DESCRIPTION OF THE MODEL AND RESULTS

The model we consider is defined on the d-dimensional hypercubic
box �N ={−N, . . . ,N}d and its partition function is:

ZN(κ,β,h;J )=
∑

σ∈{−1,+1}�N

exp



−κHI
N(σ )−βHSK

N (σ ;J )+h
∑

i∈�N

σi



 .

(1)

The Hamiltonian of the SK model is defined as

HSK
N (σ ;J )=− 1√

2|�N |
∑

i,j∈�N

Jij σiσj

and the couplings Jij are i.i.d. Gaussian random variables N (0,1). On the
other hand, the Hamiltonian of the Ising model is

HI
N(σ)=−1

2

∑

i,j∈�N

K(i − j)σiσj ,

where we assume that the interaction decays exponentially, i.e.,

|K(i)|�C1e
−C2|i| (2)

for some C1,C2 >0. We do not require the interaction to be ferromagnetic.
The finite volume (disorder-dependent) pressure is defined as usual as

pN(κ,β,h;J )= 1
|�N | log ZN(κ,β,h;J ).

Later, we will need to consider the (Gaussian) Random Field Ising
Model (RFIM), defined by the partition function
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ZRFIM
N (κ,h, γ ;J )=

∑

σ∈{−1,+1}�N

exp



−κHI
N(σ )+

∑

i∈�N

σi(h+γ Ji)



 ,

Ji being i.i.d. standard Gaussian variables, and being also independent
from the Jij ’s in the sequel. The existence of the infinite volume pressure
of the RFIM,

pRFIM(κ, h, γ ) = lim
N→∞

EpRFIM
N (κ,h, γ ;J )

= a.s.− lim
N→∞

pRFIM
N (κ,h, γ ;J ) ,

is a well known consequence of additivity and of the ergodic theorem, e.g.
ref. 17.

Our main results can be summarized as follows:

Theorem 1. For all h∈R, and all κ,β >0, the limit

p(κ,β,h)= lim
N→∞

EpN(κ,β,h;J ), (3)

exists and

pN(κ,β,h;J )
N→∞−→ p(κ,β,h) (4)

for a.e. J and in the Lp-norm (p ∈ [1,∞)).

Theorem 2. For all h ∈ R, there exist κ0(h) > 0 and β0(h) > 0 such
that, for 0�κ �κ0(h) and 0�β �β0(h)

p(κ,β,h)= inf
0�q�1

(
pRFIM(κ, h,β

√
q)+ β2

4
(1−q)2

)
. (5)

In the case κ = 0, it is established in ref. 7 that the infimum in (5) is
achieved at a unique point. As explained below (see Section 3.2), we take
small enough κ0(h) so that, for 0 � κ � κ0(h) and 0 � β � β0(h), the infi-
mum in (5) is achieved at a unique q. In the following, we will always
denote by q̄ = q̄(κ, β, h) the value that realizes the infimum in (5).

We emphasize that κ0(h) is taken small enough so that the RFIM is
inside Dobrushin’s uniqueness region for every realization of the external
fields Ji, i ∈Z

d . Let 〈·〉∞,J be the unique infinite volume Gibbs measure for
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the RFIM with γ =β
√

q̄, depending on Ji, i ∈Z
d . If � denotes the lexico-

graphic order in Z
d , define

� =�(κ,β,h)=EJi ,i�0

(
EJ ′

0,Ji ,i≺0 log
〈
eβ

√
q̄(J ′

0−J0)σ0
〉

∞,J

)2

,

where J ′
0 is an independent copy of J0, J ′

0 being independent of (Ji, i ∈
Z

d). Here, the E-expectations are conditional, and the subscripts of E indi-
cate on which variables the expectation is performed. Then, we have the
following central limit theorem:

Theorem 3. For 0�κ �κ0(h) and 0�β �β0(h),

√
|�N |

(
pN(κ,β,h;J )−EpN(κ,β,h;J )

)
law−→N

(
0,� − β2

2
q̄2

)
. (6)

One can check by expansion around κ =β =0, h �=0, that the limiting var-
iance � − (β2/2)q̄2 is strictly positive for any fixed non-zero h and small
κ,β. This proves that the fluctuations of pN(κ,β,h;J ) are truly of order
of the square root of the volume inverse in this region of the parameters.
To match with the breakdown in the order of magnitude of fluctuations
at zero external field, we observe that both q̄ and � vanish as h→0, and
also that they are equal to zero when h=0.

3. PROOFS

3.1. For Small κ the RFIM is Inside the Dobrushin Uniqueness

Region

Let i �= k be lattice points. Under any (infinite volume) RFIM Gibbs
measure 〈·〉∞,J the law 〈·|η〉i,∞,J of σi given σj = ηj , j �= i, is Bernoulli
with parameter proportional to exp{σi [Hi,k;η +κK(i −k)ηk]} with

Hi,k;σ =κ
∑

j �=i,k

K(i − j)σj +h+γ Ji.

Following e.g. Section 2 in ref. 5, we define the Dobrushin’s influence
coefficient

Cki = sup
{

1
2
‖ 〈·|η〉i,∞,J − 〈·|η′〉

i,∞,J
‖var;η=η′ off k

}
,
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where ‖ · ‖var is the variation norm. With a straightforward computation,

‖ 〈·|η〉i,∞,J − 〈·|η′〉
i,∞,J

‖var = 2| 〈+|η〉i,∞,J − 〈+|η′〉
i,∞,J

|

� 2| sinh 2κK(i −k)|
cosh[2Hi,k;η]+ cosh[2κK(i −k)]

for such η, η′, and so

Cki � | tanh 2κK(i −k)|� |2κK(i −k)|. (7)

Therefore, for κ < κ1 = (2
∑

i �=0 |K(i)|)−1 we derive from (7) and (2) that
a = supi

∑
k ρ|i−k|Cki < 1 for some ρ > 1, which implies (see Section 2.3

in ref. 5) that the Gibbs measure 〈·〉∞,J is unique and has exponentially
decreasing correlations. More precisely, for all local functions f, g, there
is a finite constant C =C(a, f, g) such that for all i ∈Z

d

| 〈f ;g ◦ θi〉∞,J |�Cρ−|i| (8)

with θi the shift of vector i and 〈f ;g〉∞,J the covariance of f, g.

3.2. Uniqueness of q̄

Introduce

F(q, κ)=Fβ,h(q, κ)=pRFIM(κ, h,β
√

q)+ β2

4
(1−q)2,

which is, in view of (8), a smooth function of all its arguments if κ <κ1
(e.g., Corollary 8.37 in ref. 6).

Proposition 1. Assume h �=0. For all β, there exists κ2 =κ2(β, h)>0
such that q �→F(q, κ) has a unique minimizer on [0,1] for κ <κ2.

By Guerra,(7) we know that the minimizer q0 of F(q,0) is unique,
strictly positive and that4

∂2

∂2q
F(q0,0)>0. (9)

4Ref. 7, p. 166.
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By (8), the function F is continuous in κ uniformly in q ∈ (0,1]. Hence,

∀δ >0 ∃κ̃ : ∀κ < κ̃ arg min[0,1] F(·, κ)⊂ (q0 − δ, q0 + δ). (10)

Again by (8), the function F is C2 in a neighborhood of (q0,0). By the
implicit function theorem for the equation

∂

∂q
F (q, κ)=0,

(which applies thanks to condition (9)) we then derive that there exist
neighborhoods U of q0 and V of κ = 0 and a function q̄ : V �→ U such
that, for q ∈ V,κ ∈ U , the above equation is equivalent to q = q̄(κ). With
δ small enough so that (q0 − δ, q0 + δ)⊂V , we choose now κ2 <κ̃ (with κ̃

from (10)) such that (−κ2, κ2)⊂U . Then, for κ <κ2, F(·, κ) has a unique
minimum at q = q̄(κ).

As for the case h = 0, one can prove similarly the following results,
that we mention for comparison but will neither prove nor use.

Proposition 2. For all β �= 1, there exists κ3 = κ3(β) > 0 such that
q �→ Fβ,0(q, κ) has a unique minimizer on [0,1] for κ < κ3. If β < 1, the
minimizer is q =0.

Remark. The restriction β �= 1 is due to the fact that for β =βc = 1
(the critical point of the SK model) one has q0(βc,0)=0 and, in contrast
with (9),

∂2

∂2q
Fβc,0(0,0)=0.

3.3. Proof of Theorem 1

Proof of (3). The proof is standard, we just sketch the main steps.
Consider the box �mN , with m,N ∈ N, and partition it into sub-boxes
�

(�)
N , �=1, . . . ,md , congruent to �N . Moreover, let Z̃mN be the partition

function of the system where, with respect to (1), HSK
mN(σ ;J ) is replaced

by

−
md∑

�=1

1√
2|�N |

∑

i,j∈�
(�)
N

J
(�)
ij σiσj
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the J
(�)
ij being md independent families of standard Gaussian variables.

Note that, in this system, the different sub-boxes interact only through the
Ising potential K(.). Then, following the ideas of ref. 10, it is easy to prove
that

pmN(κ,β,h)� 1
|�mN |E log Z̃mN(κ,β,h;J (�)).

Since the Ising potential is summable, the interaction among the
different sub-boxes due to the potential K grows at most proportionally
to κ and to the the total surface, d mdNd−1. As a consequence, one has
the approximate monotonicity

pmN(κ,β,h)�pN(κ,β,h)−κ
C

N

for some constant C depending on the potential K(.). From this, it is a
standard fact to deduce that the sequence {pmN }N has a limit when N →
∞, that it does not depend on m, and that it coincides with limN pN .

Proof of (4). The almost sure convergence is standard and follows
from exponential self-averaging of the pressure (see for instance Proposi-
tion 2.18 of ref. 12), which in the present case reads

P (|pN(κ,β,h;J )−EpN(κ,β,h;J )|�u)�D1 e−D2(β)|�N |u2
,

together with Borel–Cantelli’s lemma. The Lp-convergence comes from
uniform integrability, which again follows from exponential concentration.

3.4. Proof of Theorem 2

For 0� t �1 and any q �0, define the interpolating partition function

Z(t)=
∑

σ∈{−1,+1}�N

exp
(
−H(t)(σ )

)
, (11)

H(t)(σ )=κHI
N(σ )+β

√
tHSK

N (σ ;J )−
∑

i∈�N

σi

(
h+β

√
q(1− t)Ji

)
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with the properties

Z(0)=ZRFIM
N (κ,h,β

√
q;J ),

Z(1)=ZN(κ,β,h;J ).

The t-derivative of the corresponding pressure

pN(t)= 1
|�N |E log Z(t)

is easily computed: We denote by 〈·〉t the Gibbs measure associated to
H(t), by 〈·〉⊗2

t its tensor product acting on a pair (σ 1, σ 2)∈{−1,+1}�N ×
{−1,+1}�N , by q12 = |�N |−1 ∑

i∈�N
σ 1

i σ 2
i the overlap between configura-

tions σ 1 and σ 2, and we get by the Gaussian integration by parts formula
EJiF (Ji)=EF ′(Ji),

d

dt
pN(t) = β

2|�N |E




1√

2|�N |t
∑

i,j∈�N

Jij

〈
σiσj

〉
t
−

√
q√

1− t

∑

i∈�N

Ji 〈σi〉t






int.by parts= β

2|�N |E




β

2|�N |
∑

i,j∈�N

(
1−

〈
σ 1

i σ 1
j σ 2

i σ 2
j

〉⊗2

t

)

−βq
∑

i∈�N

(
1−

〈
σ 1

i σ 2
i

〉⊗2

t

)

=β2

4
(1−q)2−β2

4
E

〈
(q12−q)2

〉⊗2

t
,

(12)

so that, integrating in t between 0 and 1, taking the N → ∞ limit and
optimizing on q, we have the “first half” of Eq. (5):

p(κ,β,h)� inf
q�0

(
pRFIM(κ, h,β

√
q)+ β2

4
(1−q)2

)
. (13)

Note that the inequality holds for any values of β and κ.
Next, consider a system of two coupled replicas: For λ>0 let

Z(2)(t, λ)=
∑

σ 1,σ 2∈{−1,+1}�N

exp

(
−H(t)(σ 1)−H(t)(σ 2)+ β2

2
|�N |λ(q12 −q)2

)
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and denote by 〈·〉t,λ the Gibbs measure on {−1,+1}�N ×{−1,+1}�N asso-
ciated to this partition function. (Of course, 〈·〉t,0 = 〈·〉⊗2

t and Z(2)(t,0) =
Z(t)2.) With

p
(2)
N (t, λ)= 1

2|�N |E log Z(2)(t, λ),

we have by a computation similar to (12) and using symmetry in σ 1, σ 2,

d

dt
p

(2)
N (t, λ0 − t)

= β

4|�N |E




2√

2|�N |t
∑

i,j∈�N

Jij

〈
σ 1

i σ 1
j

〉

t,λ0−t

− 2
√

q√
1− t

∑

i∈�N

Ji

〈
σ 1

i

〉

t,λ0−t
−β|�N |

〈
(q12 −q)2

〉

t,λ0−t






int.by parts= β

4|�N |E




β

|�N |
∑

i,j∈�N

(
1+

〈
σ 1

i σ 1
j σ 2

i σ 2
j

〉

t,λ0−t

−2
〈
σ 1

i σ 1
j σ 3

i σ 3
j

〉⊗2

t,λ0−t

)
−2βq

∑

i∈�N

(
1+

〈
σ 1

i σ 2
i

〉

t,λ0−t

−2
〈
σ 1

i σ 3
i

〉⊗2

t,λ0−t

)
−β|�N |

〈
(q12 −q)2

〉

t,λ0−t






= β2

4
(1−q)2 − β2

2
E

〈
(q13 −q)2

〉⊗2

t,λ0−t
,

so that, integrating,

p
(2)
N (t, λ)� β2

4
(1−q)2t + 1

2|�N |E log Z(2)(0, t +λ). (14)

Now, setting uN(t)=pRFIM
N (κ,h,β

√
q)+ (β2/4)(1 − q)2t −pN(t), which is

a non-negative function by (12), and using convexity of the pressure with
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respect to λ and the identity p
(2)
N (t,0)=pN(t), we obtain for any λ>0

d

dt
uN(t)

(12)= ∂

∂λ
p

(2)
N (t,0)

convexity
�

p
(2)
N (t, λ)−pN(t)

λ
(15)

(14)

� 1
λ

[
uN(t)+ 1

2|�N |E log
Z(2)(0, t +λ)

Z(2)(0,0)

]
.

Since Z(2) is increasing in λ, Eq. (15) implies

d

dt
log

[
uN(t)+ 1

2|�N |E log
Z(2)(0,1+λ)

Z(2)(0,0)

]
� 1

λ
,

which, recalling that uN(0)=0, can be immediately integrated to give

uN(t)�
(
et/λ −1

)× 1
2|�N |E log

Z(2)(0,1+λ)

Z(2)(0,0)
(16)

and Eq. (5) follows if we can prove that

lim
N→∞

1
2|�N |E log

Z(2)(0, λ0)

Z(2)(0,0)
=0 (17)

for some λ0 > 1, if q is chosen properly. (Note that λ0 = λ + 1 > 1 is
required so that one can take t up to 1 and still have λ > 0, which is
needed in (15).)

Define for any µ∈R, q �0

αN(µ;J )= 1
2|�N | log

〈
eµ|�N |(q12−q)

〉⊗2

κ,β
√

q,N

and αN(µ) = EαN(µ;J ). We denote by 〈.〉⊗2
κ,β

√
q,N

the Gibbs measure for
two replicas of the RFIM with parameters κ and γ = β

√
q and volume

�N . Later we will also use the notation 〈.〉(µ)

κ,β
√

q,N
for

〈A〉(µ)

κ,β
√

q,N
=

〈
Aeµ|�N |(q12−q)

〉⊗2
κ,β

√
q,N

〈
eµ|�N |(q12−q)

〉⊗2
κ,β

√
q,N

.
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Let q̄N = q̄N (β, κ, h) be the value, which minimizes

pRFIM
N (κ,h,β

√
q)+ β2

4
(1−q)2

with respect to q, cf (5). Clearly, q̄N satisfies the “self-consistent equation”

q =E 〈q12〉⊗2
κ,β

√
q,N

=
∑

i∈�N
E 〈σi〉2

κ,β
√

q,N

|�N | . (18)

An analysis analogous to the one of Section 3.2 shows that the solution of
(18) is unique for κ small enough, for N sufficiently large, and that q̄N → q̄

for N →∞. A Taylor expansion around µ=0 gives immediately

αN(µ;J )=αN(0;J )+µα′
N(0;J )+

∫ µ

0
dy

∫ y

0
duα′′

N(u;J ),

where

αN(0;J ) = 0, (19)

α′
N(0;J ) = 1

2

(
〈q12〉⊗2

κ,β
√

q̄N ,N
−E 〈q12〉⊗2

κ,β
√

q̄N ,N

)
, (20)

α′′
N(u;J ) = |�N |

2

(〈
q2

12

〉(u)

κ,β
√

q̄N ,N
−
(
〈q12〉(u)

κ,β
√

q̄N ,N

)2
)

(21)

= 1
2|�N |

∑

i,j∈�N

〈(
σ 1

i σ 2
i −

〈
σ 1

i σ 2
i

〉)(
σ 1

j σ 2
j −

〈
σ 1

j σ 2
j

〉)〉(u)

κ,β
√

q̄N ,N
.

(22)

We can view 〈.〉(u)

κ,β
√

q̄N ,N
as the Gibbs measure of a system with 2|�N |

spins, with exponentially decaying pair interactions. Since κ is small, tak-
ing µ itself sufficiently small, we keep this system inside the Dobrushin
uniqueness region. Using exponential decay of correlations as in Section
3.1, we obtain that α′′

N(u;J ) is bounded above by a constant, uniformly
in N ,J and in u∈ [0,µ], so that

αN(µ;J )�µα′
N(0;J )+Cµ2 (23)

for κ <κ0(h). Note that this bound holds for any µ, since it does for small
µ and the function α can grow at most linearly at infinity.



Ising–Sherrington-Kirpatrick Model 159

With this in hand, we go back to proving (17). After a Gaussian
transformation

Z(2)(0, λ0)

Z(2)(0,0)
=

∫
dz

√
|�N |
2π

e−|�N | z2
2

〈
eβz

√
λ0|�N |(q12−q̄N )

〉⊗2

κ,β
√

q̄N ,N

=
∫

dz

√
|�N |
2π

e|�N |(−z2/2+2αN (βz
√

λ0;J )).

Equations (23) and (20) imply that, for β <β0(h)=1/
√

4Cλ0

1
2|�N |E log

Z(2)(0, λ0)

Z(2)(0,0)
� 1

2|�N |E log
∫

dz

√
|�N |
2π

×e
|�N |

(
−z2/2(1−4Cβ2λ0)+2zβ

√
λ0α

′
N(0;J )

)

� C′
E (α′

N(0;J ))2

= C′

4|�N |2
∑

i,j∈�N

E((〈σi〉2 −E 〈σi〉2)(
〈
σj

〉2

−E
〈
σj

〉2
)), (24)

where for simplicity we have written 〈.〉 for 〈.〉⊗2
κ,β

√
q̄N ,N

. We now show that
the last expression is of order 1/|�N |. Indeed, take two distinct sites i, j

and consider the d-dimensional ball Bij of radius |i − j |/2 centered at i.
If 〈σi〉 were depending only on (Jk, k ∈Bij ) and

〈
σj

〉
on (Jk, k ∈Bc

ij ) only,
the corresponding term in (24) would be zero by independence. But in the
Dobrushin region, we can approximate 〈σi〉 by the expectation of σi for
the finite volume RFIM on Bij with an error which is exponentially small
in the radius |i − j |/2, uniformly in the Jk’s. Doing similarly with

〈
σj

〉
, we

conclude that

E((〈σi〉2 −E 〈σi〉2)(
〈
σj

〉2 −E
〈
σj

〉2
))�C′ρ−C′′|i−j |

for suitable constants C′,C′′ > 0. This, together with (24), immediately
implies that

1
2|�N |E log

Z(2)(0, λ0)

Z(2)(0,0)
� c

|�N | .

At this point, recalling Eq. (16), one finds

pN(κ,β,h)�pRFIM
N (κ, h,β

√
q̄N )+ β2

4
(1− q̄N )2 −

(
e1/(λ0−1) −1

) c

|�N | ,
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which, together with (13), proves the convergence in average of the pres-
sure to the expression (5). Moreover, from Eqs. (15) and (12) one deduces
that

lim sup
N→∞

sup
0�t�1

|�N |E
〈
(q12 − q̄N )2

〉⊗2

t
<∞ , (25)

which will be needed in Section 3.5, where we deal with pressure fluctuations.

3.5. Proof of Theorem 3

We follow the strategy which was introduced in ref. 11, adapted to the
present case where short-range interactions are also present. Let

f̂N (t)=
√

|�N |
(

log Z(t)

|�N | −pN(t)

)
,

where Z(t),pN(t) were defined in Eqs. (11) and (12) and it is understood
that q is taken to be q̄N = q̄N (β, κ, h) as in Eq. (18), to be distinguished
from q̄ = lim q̄N .

We will prove that

lim
N→∞

E eiuf̂N (t) = exp

(
−u2

2
(� − β2

2
t q̄2)

)
(26)

for any u∈R, 0� t �1, from which Eq. (6) follows for t =1.
By means of integrations by parts one finds

∂tE eiuf̂N (t) = iuE eiuf̂N (t) d

dt
f̂N (t)

= β2

4
u2q̄2

NE eiuf̂N (t) − β2

4
u2

E eiuf̂N (t)
〈
(q12 − q̄N )2

〉⊗2

t

−i
β2

4
u
√

|�N |E eiuf̂N (t)

(〈
(q12 − q̄N )2

〉⊗2

t
−E

〈
(q12 − q̄N )2

〉⊗2

t

)

and, using Eq. (25),

∂tE eiuf̂N (t) = β2u2q̄2

4
E eiuf̂N (t) +o(1).
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Integrating in t , Eq. (26) is then proven provided that we show that

lim
N→∞

E eiuf̂N (0) = exp

(
−u2

2
�

)
, (27)

i.e., a central limit theorem for pressure fluctuations of the RFIM at high
temperature.

To this purpose, we employ the central limit theorem for martin-
gales,(13) which we recall for convenience (similar ideas were employed in
ref. 2, Section 6). Let (�,A, P ) be a probability space, F (n) ={Fn

k

}
0�k�n

a filtration of A, for n∈N, such that Fn
0 ={∅,�}, and ξ (n) ={

ξn,k

}
1�k�n

a
sequence of random variables adapted to F (n). We denote by En,k (respec-
tively, P n,k) the expectation (respectively, the probability) conditioned to
Fn

k and by V n,k the conditional variance

V n,k(X)=En,k(X2)−
(
En,kX

)2

of a random variable X. We say that the triangular array
{
ξn,k

}
n>0,1�k�n

is asymptotically negligible if for any ε >0

n∑

k=1

P n,k−1 (|ξn,k|� ε
) P−→0, (28)

when n→∞. Then, the following holds:

Theorem 4. Let
{
ξn,k

}
n>0,1�k�n

be an asymptotically negligible tri-
angular array of square integrable random variables, and assume that for
some � >0,

n∑

k=1

En,k−1(ξn,k)
P−→0 (29)

and

n∑

k=1

V n,k−1(ξn,k)
P−→� (30)

for n→∞. Then,

n∑

k=1

ξn,k
law−→N (0,�).
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To simplify notations in our case, let |�N |=n, h+β
√

q̄NJi =hi and

pn,h =pRFIM
N (κ,h,β

√
q̄N ;J ).

Introducing the usual lexicographic ordering of the sites in �N , we
define Fn

k , for k ∈�N , as the σ -algebra generated by the random fields Ji

for i ∈�N, i �k, and

ξn,k =√
n(En,kpn,h −En,k−1pn,h),

so that

√
|�N |(pRFIM

N (κ,h,β
√

q̄N ;J )−EpRFIM
N (κ,h,β

√
q̄N ;J ))=

∑

k∈�N

ξn,k.

(31)

Of course, En,k(.) = EJ�,�∈�N,��k(.), and by convention Fn
k = {∅,�} if k

precedes the first site in �N . One can rewrite

ξn,k =− 1√
n

EJ ′
k,J�,��k log

〈
e(h′

k−hk)σk

〉

n,h
,

where J ′
k is an independent copy of Jk – independent of (Jl, l ∈Z

d) – , and
h′

k =h+β
√

q̄NJ ′
k, so that

∣∣ξn,k

∣∣�n−1/2
EJ ′

k
|h′

k −hk|�Cn−1/2(|hk|+C)

for some constant C and

En,k−1 ∣∣ξn,k

∣∣3 �C′n−3/2.

This implies asymptotic negligibility (28), since

∑

k∈�N

P n,k−1 (|ξn,k|� ε
)
� 1

ε3

∑

k∈�N

En,k−1
(
|ξn,k|3

)
� C′

ε3√n
.

In order to apply Theorem 4, we have to check conditions (29) and (30).
The first one is evident, since

En,k−1ξn,k =0,
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identically. As for the second, notice that

V n,k−1(ξn,k)= 1
n

EJk

(
EJ ′

k,J�,��k log
〈
e(h′

k−hk)σk

〉

n,h

)2

. (32)

Let k correspond to a site “in the bulk” of �N , i.e., assume that the dis-
tance between k and the boundary of �N is larger than, say, n1/(2d). In
this case, we will write k ∈BN . We want to replace 〈.〉n,h in (32) with the
unique infinite-volume Gibbs measure 〈.〉∞,h. To this purpose, note prelim-
inarily that

∣∣∣∣∣∣∣
log

〈
e(h′

k−hk)σk

〉

n,h〈
e(h′

k−hk)σk

〉

∞,h

∣∣∣∣∣∣∣
�2|h′

k −hk|.

Moreover, thanks to Dobrushin’s theorem,

〈
e(h′

k−hk)σk

〉

n,h〈
e(h′

k−hk)σk

〉

∞,h

=1+ e(h′
k−hk) − e−(h′

k−hk)

〈
e(h′

k−hk)σk

〉

∞,h

δn,h (33)

with some δn,h such that

lim
n→∞ sup

k∈BN

sup
h

|δn,h|≡ lim
n→∞ εn =0.

Denoting by An,k the event

An,k =
{
|h′

k −hk|� 1
2

log
(

1
2εn

)}

and using the fact that | log(1+x)|�D|x| for |x|�1/2 for some finite con-
stant D, one can write

∣∣∣∣∣∣∣
log

〈
e(h′

k−hk)σk

〉

n,h〈
e(h′

k−hk)σk

〉

∞,h

∣∣∣∣∣∣∣
�Dεne

2|h′
k−hk | +2|h′

k −hk|1AC
n,k

.
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Therefore one has

V n,k−1(ξn,k) = 1
n

EJk

(
EJ ′

k,J�,��k log
〈
e(h′

k−hk)σk

〉

∞,h

)2

+ 1
n
o(1)

= 1
n

(
φ(θ−kh)+o(1)

)
,

where o(1)→0 for n→∞ uniformly in k ∈BN , θk is the shift of vector k

and

φ(h)=EJ0

(
EJ ′

0,J�,��0 log
〈
e(h′

0−h0)σ0
〉

∞,h

)2

the subscript 0 referring of course to the origin of the lattice Z
d . Note

that there is a residual n-dependence in φ, since the fields hi are defined
through q̄N , but this dependence is easily seen to be harmless thanks
to the exponential decay of correlations inside Dobrushin’s uniqueness
region, and to the fact that q̄N → q̄. Finally, defining h̃i =h+β

√
q̄Ji , the

ergodic theorem implies that, for almost every J ,

lim
n→∞

∑

k∈�N

V n,k−1(ξn,k)= lim
n→∞

1
n

∑

k∈�N

φ(θ−kh)=Eφ(h̃)≡�(κ,β,h),

where we used the fact that the contribution of the spins k /∈BN vanishes
for |�N |→∞. At this point, all the conditions necessary to apply Theo-
rem 4 are fulfilled and, recalling (31), one has (27), which concludes the
proof of Theorem 3.
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